The q-WZ method for infinite series
نویسندگان
چکیده
Abstract. Motivated by the telescoping proofs of two identities of Andrews and Warnaar, we find that infinite q-shifted factorials can be incorporated into the implementation of the q-Zeilberger algorithm in the approach of Chen, Hou and Mu to prove nonterminating basic hypergeometric series identities. This observation enables us to extend the q-WZ method to identities on infinite series. As examples, we will give the q-WZ pairs for some classical identities such as the q-Gauss sum, the 6φ5 sum, Ramanujan’s 1ψ1 sum and Bailey’s 6ψ6 sum.
منابع مشابه
New explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملHypergeometric series acceleration via the WZ method
Based on the WZ method, some series acceleration formulas are given. These formulas allow us to write down an infinite family of parametrized identities from any given identity of WZ type. Further, this family, in the case of the Zeta function, gives rise to many accelerated expressions for ζ(3). AMS Subject Classification: Primary 05A We recall [Z] that a discrete function A(n,k) is called Hyp...
متن کاملWZ factorization via Abay-Broyden-Spedicato algorithms
Classes of Abaffy-Broyden-Spedicato (ABS) methods have been introduced for solving linear systems of equations. The algorithms are powerful methods for developing matrix factorizations and many fundamental numerical linear algebra processes. Here, we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW factorizations of a nonsingular matrix as well as...
متن کاملInfinite families of accelerated series for some classical constants by the Markov-WZ Method
A function H(x,z), in the integer variables x and z, is called hypergeometric if H(x+1,z)/H(x,z) and H(x,z+1)/H(x,z) are rational functions of x and z. In this article we consider only those hypergeometric functions which are a ratio of products of factorials (we call such hypergeometric functions purehypergeometric). A P-recursive function is a function that satisfies a linear recurrence relat...
متن کامل2 00 9 About the WZ - pairs which prove Ramanujan series
Observing those WZ-demostrable generalizations of the Ramanujan-type series that were already known, we get the insight to make some assumptions concerning the rational parts of those WZ-pairs that prove them. Based on those assumptions, we develop a new strategy in order to prove Ramanujantype series for 1/π. Using it, we find more WZ-demonstrable generalizations, and so new WZ-proofs, for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 44 شماره
صفحات -
تاریخ انتشار 2009